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1. Introduction

The covariant super-Poincaré quantization of the ten dimensional superstring is an im-

portant problem that has attracted lots of attention over the years. There are strong

motivations for developing such a formalism. To start with one would like to be able to

compute multi-loop amplitudes in a manifestly supersymmetric fashion and analyze the

associated issue of the perturbative finiteness of the superstring perturbation theory. Fur-

thermore, holographic dualities and the study of flux vacua in string theory make urgent

the need for a formalism that can handle RR backgrounds.

A new formalism that achieves such a covariant quantization, the pure spinor formal-

ism, was proposed by Berkovits in [1], see [2] for a review. The worldsheet fields, in the

minimal version of this formalism, are the spacetime coordinates Xm and the spacetime

fermions θα, as in the Green-Schwarz formalism, conjugate fermionic momenta pα (first

introduced by Siegel in [3]) and new bosonic twistor-like variables λα that take values in

the space of pure spinors, namely they satisfy λαγm
αβλβ = 0, and their conjugate momenta
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wα. The non-minimal version contains an additional bosonic pure spinor of opposite chi-

rality, λ̄α, a constrained fermionic spinor rα and their conjugate momenta, w̄α, sα. One

can construct from these fields a fermionic nilpotent operator QS that is postulated to

be the BRST operator of the theory. In a flat background the worldsheet theory is free

(modulo the non-linear pure spinor constraint) and a prescription for the computation of

scattering amplitudes has been developed in a number of papers [1, 4 – 6] with tests and

explicit computations presented in [7 – 11].

There are several unconventional aspects of this formalism. Usually the BRST sym-

metry arises after gauge fixing a local symmetry, which in the case of strings includes

worldsheet diffeomorphisms. In the pure spinor formalism however one instead is given

directly the “gauged-fixed” model in the conformal gauge and a BRST operator QS . Sim-

ilarly, the prescription for the scattering amplitudes was postulated rather than derived

from first principles. In particular, the absence of an antighost field b led to a (complicated)

construction of a composite field, with properties similar to that of the antighost, which

was used in the proposal for the measure of the multi-loop amplitudes. Although there is

very little doubt that the current form of the computation rules is correct, it would clearly

be desirable to have a first principles derivation. Such a derivation, apart from providing

a better justification of the current computational rules, could also help in the search of a

simplified version.

In this paper we provide such a derivation. There have been many works in the past

involving modifications and/or extensions of the pure spinor formalism with the same aim,

see for example [12 – 19]. Our approach is different and is guided by topological string

constructions. Instead of searching for a model with a local symmetry which after gauge

fixing would lead to the pure spinor formalism with QS and the pure spinors emerging

as a BRST operator and ghost fields, we shall consider the pure spinors λ as “matter”

fields as well and the worldsheet theory as a sigma model with a nilpotent symmetry QS

and target space ten dimensional superspace times the pure spinor space. To construct a

string theory we couple this theory to two-dimensional gravity in a way that preserves the

fermionic symmetry QS and then BRST quantize the resulting theory in a conventional

fashion. Following [20], gauge invariances due to zero modes are also included in the BRST

analysis by introducing constant ghosts. This leads automatically to a scattering amplitude

prescription that is BRST invariant and upon integrating out the constant ghosts and

associated auxiliary fields one arrives at various insertions in the path integral measure.

This paper is organized as follows. In the next section we review the pure spinor

formalism. In section 3 we couple the theory to 2d topological gravity and in section 4 we

introduce vertex operators. The BRST quantization of this system is presented in section 5.

Section 6 contains the analysis of the invariances due to the pure spinor zero modes. In

this section we show that depending on how one treats the auxiliary fields one arrives

either at the minimal or the non-minimal scattering amplitude prescription. We conclude

in section 7 with a brief summary of our results. Finally there are two appendices: in the

first we discuss U(5) variables and the Y formalism, while the second contains details of

computations relevant for section 5.
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2. Review of the pure spinor formalism

We review in this section the pure spinor formalism. In the minimal version, the worldsheet

action for the left-movers in conformal gauge and flat target space is given by

Sσ =

∫

d2z

(

1

2
∂xm∂̄xm + pα∂̄θα − wα∂̄λα

)

(2.1)

with m = 0, . . . , 9 and α = 1, . . . , 16. For Type II strings the right-movers are similar to

the left-movers while for the heterotic string the right-moving variables are those of the

heterotic RNS formalism. The field λα is a bosonic pure spinor satisfying,

λαγm
αβλβ = 0, (2.2)

where γm
αβ are the symmetric 16 × 16 d = 10 Pauli matrices. The fields θα, λα, have

conformal dimension 0 and the corresponding conjugate momenta pα, wα have conformal

dimension 1.

Since the action is quadratic in fields quantization is straightforward except for the

fact that λα satisfies the quadratic constraint (2.2), so its quantization requires some expla-

nation. More precisely, the pure spinor part of the action is a curved βγ system describing

maps from the worldsheet to the space of pure spinors, with λα being holomorphic coordi-

nates in this space. This system can be analyzed by covering the space of pure spinors with

coordinate patches and then gluing appropriately on the overlaps [21, 22]. In particular,

one may cover the pure spinor space with 16 coordinate patches chosen such that on each

of them one of the pure spinor components λα is non-vanishing. On such a patch one may

explicitly solve the pure spinor constraint to express λα in terms of 11 independent (com-

plex) variables. For example, using the decomposition 16 → 1+10+5∗ of the spinor of (the

Wick rotated Lorentz group) SO(10) under SU(5) one may solve the pure spinor constraint

by suitably expressing the 5∗ in terms of the 1 and 10. Furthermore, the action (2.1) has

a gauge invariance

δwα = Λm(γmλ)α , (2.3)

where Λm is a gauge parameter, which on each patch can be used to eliminate 5 compo-

nents of wα, so we are left with 11 conjugate momenta for the 11 independent pure spinor

components. In appendix A we show how to implement these steps in the path integral

starting from a Lorentz invariant action involving unconstrained spinors λα and a Lagrange

multiplier lm that imposes the pure spinor condition. Integrating out the Lagrange multi-

plier and the ghost fields resulting from gauge fixing the invariance (2.3) one obtains (after

a non-trivial cancellation) a free action for the 11 independent pure spinor variables and

their conjugate momenta. Since the starting point is Lorentz invariant all computations

done with the U(5) variables will preserve Lorentz invariance.

The model is invariant under a fermionic nilpotent symmetry (which for the left-movers

is) generated by

QS =

∮

dzλα(z)dα(z), (2.4)
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where

dα = pα − 1

2
γm

αβθβ∂xm − 1

8
γm

αβγm γδθ
βθγ∂θδ, (2.5)

which is considered to play the role of the BRST operator. The transformations it generates

are given by

δSxm = λγmθ, δSθα = λα, δSλα = 0, δSdα = −Πm(γmλ)α, δSwα = dα, (2.6)

where Πm = ∂xm + 1
2θγm∂θ is the supersymmetric momentum and again we restrict to

the left-movers (so in particular, the full transformation for xm contains a similar additive

term with right-moving fields). The cohomology of this operator (at ghost number one)

indeed correctly reproduces the superstring spectrum [23].

The non-minimal version of the formalism [5] amounts to introducing a set of non-

minimal variables, the complex conjugate λ̄α of λα, a fermionic constrained spinor rβ

satisfying

λ̄αγαβ
m λ̄β = 0, λ̄αγαβ

m rβ = 0, (2.7)

and their conjugate momenta, w̄α and sa. The action (2.1) is modified by the addition of

the term Snm

Sσ → Sσ + Snm, Snm =

∫

d2z
(

−w̄α∂̄λ̄α + sα∂̄rα

)

, (2.8)

and the generator QS by

QS → QS +

∮

dzw̄αrα (2.9)

This acts on the non-minimal variables as follows

δS λ̄α = rα, δSrα = 0, δSsα = w̄α, δSw̄α = 0. (2.10)

These transformation rules imply that the cohomology is independent of the non-minimal

variables.

3. Coupling to 2d gravity

To construct a string theory we will couple the theory discussed in the previous section

to two-dimensional gravity in a way that preserves the QS symmetry and then quantize

this system. Since this model has zero central charge, one should couple it to topological

gravity. Our approach is thus similar to the construction of topological string theories,

see [24] for a review. In that context one starts from a supersymmetric sigma model which

upon topological twisting yields a topological sigma model. In this procedure one of the

supersymmetry charges is identified with the BRST operator of the sigma model. The

corresponding operator in our case is the nilpotent operator QS . Note that the pure spinor

sigma model has been obtained by twisting an N = 2 model in [16].
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The first step in this procedure is thus to relax the conformal gauge in the action (2.1)

(or (2.8) for the non-minimal version). The part that involves the xm is standard1,

SX =

∫

d2σ(
1

4

√
ggab∂ax

m∂bxm) (3.1)

The rest of the action (2.1) (or (2.8) for the non-minimal version) is a sum of first order

actions involving a field of dimension one and a field of dimension zero (with an overall

sign that depends on whether the fields are bosonic or fermionic). The covariantization of

all these terms is the same, so it suffices to discuss one of them, say

S(p,θ) =

∫

d2zpα∂̄θα . (3.2)

The fields of dimension one are vectors on the worldsheet, so pα is more accurately labeled as

paα. However, only the z-component participates in (3.2). Similarly, only the z̄ component

of the right-moving momentum2 p̃aα participates in the action. To account for this, we

introduce the projection operators

P (±)b
a =

1

2
(δa

b ∓ iJa
b) , (3.3)

where Ja
b is the complex structure of the worldsheet, i.e. it satisfies

Ja
bJb

c = −δc
a, ∇cJa

b = 0. (3.4)

In terms of the worldsheet volume form and the worldsheet metric, it is given by Ja
b =

−ǫacg
cb, with ǫab =

√
gǫ̂ab and ǫ̂01 = 1, and holomorphic and anti-holomorphic functions on

the worldsheet are defined by Ja
b∂bf = i∂af and Ja

b∂bf̃ = −i∂af̃ , respectively. Using (3.4)

one shows that

P (±)b
a P

(±)c
b = P (±)c

a P (±)b
a P

(∓)c
b = 0. (3.5)

Notice also that

gabP
(±)c

b = gcbP
(∓)a

b . (3.6)

One can obtain vectors with only z-component by multiplying by P
(+)b

a and vectors with

only z̄-component by multiplying by P
(−)b

a :

p̂a = P (+)b
a pb, ˆ̃pa = P (−)b

a p̃b . (3.7)

In other words, in complex coordinates the only non-zero component of P
(+)b

a is P
(+)z

z = 1

and the only non-zero component of P
(−)b

a is P
(−)z̄

z̄ = 1. More generally, these projection

operators can be used to covariantize any tensor given in conformal gauge. The action (3.2)

can then be covariantized as

S(p,θ) =

∫

d2σ
√

ggabp̂aα∂bθ
α . (3.8)

1We work with an Euclidean worksheet and use standard conventions, i.e. z = σ1 + iσ2, the flat metric

is gzz̄ = 1/2 etc.
2Note that throughout this article we use the notation that right-moving fields have a tilde (rather than

the more conventional bar).
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In summary the action of the minimal model coupled to gravity is given by

Sσ =

∫

d2σ
√

ggab

(

1

4
∂ax

m∂bxm + p̂aα∂bθ
α − ŵaα∂bλ

α

)

(3.9)

with an obvious addition for the case of the non-minimal model. The stress energy tensor

for the model can be obtained by varying w.r.t. the worldsheet metric,

Tab =
2√
g

δSσ

δgab
=

1

2
(∂axm∂bx

m − 1

2
gabg

cd∂cxm∂dx
m) (3.10)

+(p(a|α|∂b)θ
α − 1

2
gabg

cdpcα∂dθ
α) + T

(λw)
ab

The contribution of the pure spinor part (and the non-minimal variables) is same as the one

for the (p, θ) part with p → w and θ → λ and an overall minus sign (with similar replace-

ments for the non-minimal fields). This stress energy tensor is (manifestly) traceless and

covariantly conserved, reflecting the fact that the action is invariant under diffeomorphisms

and Weyl transformations,

δgab = Lǫ(σ)gab + 2φ(σ)gab (3.11)

δΦ = −ǫa∂aΦ

δPa = −ǫa∂aP + ∂aǫ
bPb

where ǫa(σ), φ(σ) are diffeomorphism and Weyl gauge parameters, Lǫ is the Lie derivative,

Φ = {xm, θα, λα, . . .} denotes collectively all worldsheet scalars and Pa = {paα, waα, . . .}
denotes collectively all worldsheet vectors.

The stress energy tensor (3.10) can be rewritten as

Tab = P (+)c
a P

(+)d
b TB

cd + P (−)c
a pcα

(

P
(−)d

b ∂dθ
α
)

+ · · · (3.12)

where the dots indicate the contribution from the pure spinor and non-minimal variables,

which will be suppressed from now on since they are similar to the (p, θ) contribution.

We also suppress the anti-holomorphic contribution of xm. The first term in (3.12) is the

covariantization of the stress energy tensor appearing in Berkovits’ work,

TB
ab =

1

2
∂axm∂bx

m + paα∂bθ
α + · · · (3.13)

while the second term is proportional to the θα field equation. This additional term can

be removed by modifying the transformation rule of paα in (3.11).

3.1 Topological gravity and QS invariance

If we were to quantize the model just described we would find that it is anomalous, since

the diffeomorphism ghosts would contribute c = −26 and the original sigma model had

c = 0. This problem is avoided by extending the QS symmetry to act on the worldsheet

metric, so that the 2d gravity is topological. With this aim, we introduce the following

transformation rule,

δSgab = P (−)c
a P

(−)d
b ψcd ≡ ψ̂ab, δSψ̂cd = 0. (3.14)

– 6 –
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where ψab is a new field that has only one holomorphic component, ψz̄z̄(z). (To extend

this discussion to the anti-holomorphic sector we would need to also turn on ψ̃zz(z̄), i.e.

the full transformation is δSgab = P
(−)c

a P
(−)d

b ψcd + P
(+)c

a P
(+)d

b ψ̃cd).

Since the metric now transforms, the action is not invariant and its QS variation yields,

δSSσ = −1

2

∫

d2σ
√

g T abδSgab = −1

2

∫

d2σ
√

ggacgbdTB
abψ̂cd, (3.15)

where again we only discuss the holomorphic sector, and in the second equality we used

the fact that due to the projector operators the second term in (3.12) does not contribute.

To construct an invariant action we now add a new term to the action,

Sσ → S = Sσ +
1

2

∫

d2σ
√

ggacgbdGabψ̂cd (3.16)

The new action would be invariant provided there exists Gab transforming as

δSGab = TB
ab (3.17)

Note that because ψ̂ab has only one fermionic component, the variation of the explicit

worldsheet metrics in the new term does not contribute. Including both sectors one finds

that for the discussion to go through Gab must be traceless. Equation (3.17) for Gab is pre-

cisely the equation for a composite “b-field”. Such a composite field has been constructed

in conformal gauge and one may covariantize it to obtain a QS , diffeomorphism and Weyl

invariant action. We will come back to the solution of (3.17) later on.

4. Adding vertex operators

We will be interested in computing scattering amplitudes. For this aim, it is useful to

introduce sources ρi with Weyl weight one that couple to vertex operators Vi that are

scalar functionals with Weyl weight minus one [20]. Then our starting point is the extended

action

S = S +

n
∑

i=1

ρiVi[ϕ](σi, ζi) (4.1)

where S is given in (3.16), ϕ denotes collectively all worldsheet fields and we will shortly

discuss the vertex operator. The sources ρi are considered to be infinitesimal, i.e. we

only differentiate once with respect to each source and then set them to zero. The new

action (4.1) depends on the positions of the vertex operators σa
i and their QS partners ζa

i ,

δSσa
i = ζa

i , δSζa
i = 0 , (4.2)

or in complex coordinates,

δSzi = ζi, δS z̄i = ζ̄i, δSζi = 0, δS ζ̄i = 0 . (4.3)

In keeping with the discussion of the previous sections we will mostly focus on the holomor-

phic sector. The positions σa
i and ζa

i are regarded as new constant fields which we integrate

– 7 –
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over in the path integral. This is somewhat unconventional but as demonstrated in [20] for

the case of the bosonic string it allows for a uniform derivation of scattering amplitudes

with integrated and unintegrated vertex operators. Here we extend that discussion to in-

clude the fermionic coordinates ζa
i . The action (4.1) is invariant under diffeomorphisms

provided one transforms the position σa
i of the vertex operator Vi and of ζa

i appropriately

(the corresponding BRST transformations are given in (5.3)). Furthermore, we need to

ensure that (4.1) is QS invariant. Since ζi is a fermionic variable Vi has the expansion (in

complex basis)

Vi[ϕ](zi, ζi) = V
(0)
i [ϕ](zi) + ζiV

(1)
i [ϕ](zi) , (4.4)

where again we focus on the holomorphic sector. For (4.1) to be QS invariant, we need

δS (Vi[ϕ](zi, ζi)) = 0 . (4.5)

The QS transformation can act either on worldsheet fields ϕ or on the positions zi and we

obtain

δSVi[ϕ](zi, ζi) = (δSV
(0)
i )(zi) + ζi

(

∂V
(0)
i (zi) − (δSV

(1)
i )(zi)

)

(4.6)

which implies

δSV
(0)
i = 0, δSV

(1)
i = ∂V

(0)
i , (4.7)

where now QS acts only on the fields. From (4.7) we find that the integrated vertex

operator

Ui =

∫

dzV
(1)
i (4.8)

is QS invariant.

5. BRST quantization

The action (4.1) constructed in the previous section is invariant under diffeomorphisms and

local Weyl transformations. We will now proceed to quantize this system using standard

BRST methods. As in [20, 25], our BRST analysis includes the “gauge invariances” due to

zero modes. This is done using the Batalin-Vilkovisky (BV) quantization scheme [26, 27].

Our treatment is a straightforward extension of the analysis in [20], so we will mostly quote

results; for a detailed discussion of the method including a concise self-contained summary

of BV we refer to [20].

We introduce diffeomorphism and Weyl ghosts, ca and Cω, and their QS partners,

δSca = γa, δSCω = γω . (5.1)

The BRST transformations of all fields are given as usual by replacing the gauge parameter

by the corresponding ghost. We will need below the explicit transformation of the metric

and its QS partner,

δV gab = Lcgab + 2Cωgab, δV ψ̂ab = Lcψ̂ab − Lγgab − 2γωgab + 2Cωψ̂ab (5.2)

– 8 –
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and of the positions of the vertex operators and their QS partners,

δV σa
i = −ca(σi), δV ζa

i = γa(σi). (5.3)

As discussed in [20], the zero modes of the ghost fields are associated with a gauge invariance

of the ghost action which should be gauge fixed. Following the BV quantization scheme, one

should introduce ghost-for-ghosts, extraghosts, antighosts and associated auxiliary fields to

gauge fix this invariance. For the problem at hand, (as explained in [20]) all these “fields”

are constant, i.e. do not depend on the worldsheet coordinates, ghosts-for-ghosts are not

needed and the metric moduli τk, k = 1, . . . , 6g − 6, (g ≥ 2), (considered as constant

fields) play the role of extraghosts 3. Recalling that due to the QS symmetry all fields

come in QS-multiplets, we end up introducing the following constant fields and BRST

transformations,

δSτk = τ̂k, δV τk = ξk, δSξk = ξ̂k, δV τ̂k = −ξ̂k. (5.4)

We further need antighost fields and corresponding auxiliary fields

δS β̃ab = b̃ab, δV β̃ab = −pab, δV b̃ab = πab, δSpab = πab (5.5)

(which in our conventions are tensor densities).

To gauge fix diffeomorphism and Weyl transformations we set the worldsheet metric

gab equal to a reference metric ĝab(τ). This can be implemented in the path integral via

the following gauge fixing Lagrangian,

L1 = δV δS(β̃ab[gab − ĝab(τ)]) (5.6)

= δV (b̃ab[gab − ĝab(τ)] + β̃ab[ψ̂ab − τ̂k∂kĝab(τ)])

= πab[gab − ĝab(τ)] − b̃ab[2Cωgab + Lcgab − ξk∂kĝab(τ)] − pab[ψ̂ab − τ̂k∂kĝab(τ)]

+β̃ab[Lcψ̂ab + 2Cωψ̂ab −Lγgab − 2γωgab + ξ̂k∂kĝab(τ) − τ̂kξl∂k∂lĝab(τ)] ,

where ∂kĝab(τ) = ∂ĝab(τ)/∂τk is the derivative of the reference metric w.r.t. the moduli

and ψ̂ab is defined in (3.14). This gauge fixing action contains the usual gauge fixing terms

for the metric and the ghost actions for b̃, c and β̃, γ.

In addition when the Riemann surface has κ conformal Killing vectors4 we need to fix

κ additional constant “gauge” symmetries. This is done by fixing the position of κ vertex

operators; we call this set f . From now on σa
i will always belong to the complement of f

and σa
î

to f . We further introduce additional constant antighosts and associated auxiliary

fields,

δSβ ĵ
a = bĵ

a, , δV β ĵ
a = −pĵ

a, δV bĵ
a = πĵ

a, δSpĵ
a = πĵ

a (a, ĵ) ∈ f (5.7)

3Earlier works where the moduli were treated as quantum mechanical degrees of freedom include [28 –

30, 25].
4Recall that κ = 6 for a Riemann surface of genus 0, κ = 2 for genus one and κ = 0 for higher genus

surfaces.
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and the following gauge fixing term

L2 = δV δS





∑

f

β ĵ
a(σ

a
ĵ
− σ̂a

ĵ
)



 = δV





∑

f

bĵ
a(σ

a
ĵ
− σ̂a

ĵ
) + β ĵ

aζ
a
ĵ





=
∑

f

πĵ
a(σ

a
ĵ
− σ̂a

ĵ
) − bĵ

ac
a(σĵ) − pĵ

aζ
a
ĵ

+ β ĵ
aγ

a(σĵ) . (5.8)

At this point we have treated all gauge symmetries, except the ones associated with zero

modes of the original fields X, p, θ, w, λ. We will discuss these in the next section.

To summarize, the generating functional of scattering amplitudes is given by

Z[σi; ρ
i] =

∫

dµσdµ exp (−S − L1 − L2) (5.9)

where S, L1 and L2 are given in (4.1), (5.6) and (5.8), dµσ is the measure factor associated

with X, p, θ, w, λ (and non-minimal variables) that we will discuss in the next section and

dµ is the measure that follows from the analysis of this section, i.e.

dµ =
n

∏

i=1

d2σi

√

g(σi)d
2ζi

6g−6
∏

k=1

dτkdξkdτ̂kdξ̂k
∏

f

dbĵ
adpĵ

adβ ĵ
adπĵ

a ×

×[dψab][dgab][dca][dγa][dCω ][dγω][dpab][dβ̃ab][dπab][db̃ab] (5.10)

The first line contains the integration over all constant “fields” while the second line the

fields we functionally integrate over. The integration over most of these variables can be

done exactly as we now discuss.

As in previous sections we only discuss the holomorphic sector. Firstly, integrating over

πab and gab sets the worldsheet metric equal to the reference metric ĝab in all expressions.

Integrating over πĵ
a, p

ĵ
a, leads to delta functions δ(zĵ−ẑĵ)δ(ζĵ) which can be used to integrate

over zĵ , ζĵ. So κ insertions5 will involve V
(0)

ĵ
(ẑĵ) while the remaining (n−κ) vertex operators

will involve V
(1)
i (zi) and will be integrated. Furthermore integrating out bĵ, β ĵ leads to the

insertion c(ẑĵ)δ(γ(ẑĵ)).

Note that the V
(0)

ĵ
and V

(1)
i do not depend on the ghost fields, so the path integral

factorizes into a part that only depends on the ghosts and the rest. One might anticipate

that the ghost contributions will cancel each other since ca, Cω and the γa, γω are related by

the QS symmetry. So to simplify the presentation we set to zero the ghosts. The complete

computation including the ghosts is given in appendix B. The scattering amplitudes thus

take the form

〈V1 · · ·Vn〉 =

∫

dµσe−Sσdµ̃e−S̃
κ

∏

ĵ=1

V
(0)

ĵ
(ẑ

ĵ
)

n
∏

i=κ+1

∫

dziV
(1)
i (zi), (5.11)

5In the holomorphic sector κ = 3 for a Riemann surface of genus 0, κ = 1 for genus one and κ = 0 for

higher genus surfaces.
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where

dµ̃e−S̃ =

6g−6
∏

k=1

dτkdτ̂k[dψab][dpab] exp

∫

d2σ

(

√

ĝ
1

2
Gabψ̂ab + pab[ψ̂ab − τ̂k∂kĝab(τ)]

)

(5.12)

Integrating out pab gives a delta function that sets ψ̂ab = τ̂k∂kĝab(τ). Finally integrating

out τ̂k leads to (6g − 6) (of which (3g − 3) are holomorphic) insertions of Gab,

〈V1 · · ·Vn〉 =

∫

dµσe−Sσ

∏

k

dτk(G, ∂k ĝ)
κ

∏

ĵ=1

V
(0)

ĵ
(ẑ

ĵ
)

n
∏

i=κ+1

∫

dziV
(1)
i (zi) (5.13)

where (G, ∂k ĝ) =
∫

Σ d2σ
√

ĝGab∂kĝab.

5.1 Summary

Let us summarize the results so far. We started from a theory with a fermionic nilpotent

symmetry QS and zero central charge and we coupled it to topological gravity in a way that

preserves the QS symmetry. Quantizing this system using standard BRST-BV methods

leads to the formula (5.13) for the scattering amplitudes. In this formula the position of κ

of the vertex operators V
(0)
i is fixed while the remaining ones, V

(1)
i , are integrated. These

vertex operators satisfy (in the holomorphic sector),

δSV
(0)
i = 0, δSV

(1)
i = ∂V

(0)
i . (5.14)

Furthermore, one needs (6g − 6) insertions ((3g − 3) holomorphic ones) of the field Gab

defined by

δSGab = Tab (5.15)

where Tab is the stress energy tensor of the worldsheet theory. This composite field is the

analogue of the b-antighost in the scattering prescription of bosonic string theory. One

may have anticipated these results based on the scattering amplitude prescription for the

bosonic string and studies of topological strings. Indeed this is precisely the prescription

used in the literature. The novelty here is its derivation from a first principles BRST-

BV quantization. Notice that these results hold irrespectively of what the original sigma

model is. In the next section we discuss issues specific to the pure spinor theory described

in section 2.

6. Pure spinor measure

We now return to the pure spinor sigma model. We would like to understand the path

integral measure dµσ and find the explicit form of Gab. The path integral measure will be

derived by gauge fixing “invariances due to zero modes”, as in the previous section. There

is an important difference however. The vertex operators in general depend on all fields

X, θ, π,w, λ, so the zero modes imply only an invariance of the action Sσ in (2.1) and not

of the generating functional of correlators in (5.9). At first sight it seems as though one

need not gauge fix this invariance of Sσ. Indeed fermionic zero modes do not present a
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problem; the vertex operators can provide the appropriate number of fermionic zero modes

so that the final expressions are non-vanishing. Non-compact bosonic zero modes however

are still a problem, even in the presence of vertex operators, because typically integration

over them leads to a divergent path integral; the action Sσ does not contain a convergence

factor because of the zero mode gauge invariance. This can be remedied by gauge fixing

the bosonic zero mode gauge invariances, as we discuss in this section. As we shall see,

because of the QS invariance, part of the invariance due to fermionic zero modes is also

fixed.

On a genus g surface, a worldsheet scalar Φ has one zero mode Φ0 and a worldsheet vec-

tor P has g zero modes, P0(z) =
∑g

I=1 P IωI(z), where ωI(z) are the g holomorphic Abelian

differentials of first kind satisfying
∫

AI
dzωJ = δIJ and the contour integral is around the g

non-trivial A-cycles of a genus g surface. Note that Φ0 and P I are constants. In our case

and in the minimal formulation we have 10 zero modes xm
0 , 16 zero modes θα

0 and 11 zero

modes λα
0 from the worldsheet scalars and 16g zero modes dI

α, I = 1, . . . g, and 11g zero

modes wI
α from the worldsheet vectors. Of these xm

0 , λα
0 and wI

α are bosonic. The treatment

of the zero modes of xm is standard and will not be discussed here. Furthermore, following

earlier work we will trade wα, which transforms under the gauge transformation (2.3), for

the gauge invariant variables,

Nmn =
1

2
wα(γmn)αβλβ, J = wαλα (6.1)

where Nmn is the (contribution of the pure spinors to the) Lorentz current and J is the

ghost generator. As discussed in [6], the pure spinor condition implies enough relations

between Nmn and J so that one can express the 11 independent components of wα in

terms of J and 10 component of Nmn. In what follows the 11g zero modes of Nmn, J will

be denoted by N I
mn, JI .

The BRST transformations corresponding to the zero mode gauge invariance are given

by

δV λα
0 = cα, δV θα

0 = γα, δV dI
α = γI

α, δV wI
α = cI

α, (6.2)

where cα, cI
α are constant fermionic ghosts and γα, γI

α are constant bosonic ghosts. The

transformations for λα
0 , wI

α require some explanation, since λα satisfy a quadratic constraint

and wα has a gauge invariance. These zero modes are most easily described in U(5) variables

since the system in terms of λ+, λab, w+, wab is unconstrained and has no gauge invariance

(see appendix A). The BRST transformation is then given by shifting these variables by

their zero modes. Reversing the steps in appendix A one may express cα in terms of the 11

zero modes of λ+, λab and cI
α in terms of the 11g zero modes of w+, wab. The arbitrariness

due to the gauge invariance (2.3) is then eliminated by passing to the gauge invariant

variables N I
mn, JI .

To maintain QS invariance we further require

δSγα = cα, δScI
α = γI

α (6.3)

To gauge fix the bosonic invariances we introduce constant fermionic and bosonic antighost

fields, bα, b̃α each containing 11 independent components, b̃mnI , bmnI , each containing
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10g independent components and b̃I , bI , each containing g components and corresponding

auxiliary fields. The QV and QS transformations of these fields are given by

δSbα = b̃α, δSbmnI = b̃mnI , δSbI = b̃I (6.4)

δV bα = −πα, δV b̃α = π̃α δV bmnI = −πmnI ,

δV b̃mnI = π̃mnI , δV bI = −πI , δV b̃I = π̃I

δSπα = π̃α, δSπmnI = π̃mnI , δSπI = π̃I

To gauge fix the zero mode gauge invariances we now introduce the following gauge

fixing Lagrangian

L3 = δV δS

(

bαθα
0 +

g
∑

I=1

(bmnIN I
mn + bIJI)

)

(6.5)

= δV

(

−bαλα
0 + b̃αθα

0 +

g
∑

I=1

(
1

2
bmnI(dIγmnλ0) + b̃mnIN I

mn + bI(dIλ0) + b̃I(wIλ0))

)

= παλα
0 + π̃αθα

0 +

g
∑

I=1

(

−πmnI 1

2
dIγmnλ0 + π̃mnIN I

mn − πIdI
αλα

0 + π̃IJI

)

+bαcα + b̃αγα +

g
∑

I=1

(

1

2
bmnI(γIγmnλ0 − dIγmnc) − 1

2
b̃mnI(cIγmnλ0 − wIγmnc)

+bI(γIλ0 − dIc) − b̃I(cIλ0 − wIc)

)

Integrating over bα and b̃α leads to delta functions for cα and γα, which can be used

to integrate out cα, γα. Integrating over bmnI , bI , b̃mnI , b̃I yields 11g delta functions

δ(γIγmnλ0)δ(γ
Iλ0)(c

Iγmnλ0)(c
Iλ0). The same argument that implies that one can trade

the 11g zero modes of wα for N I
mn and JI also implies that the delta functions set to zero

cI , γI (with Jacobians canceling between the γI and cI terms). So the zero-mode measure

now becomes

[dµσ]z.m. = [d16θ0][d
11π̃][d11λ0][d

11π]

g
∏

I=1

[d16dI ][d11πI ][d
11π̃I ][d

11NI ] × (6.6)

× exp

(

παλα
0 + π̃αθα

0 +

g
∑

I=1

(

−πmnI 1

2
dIγmnλ0+π̃mnIN I

mn−πIdI
αλα

0 +π̃IJI

)

)

,

where [d11λ0] and
∏

I [d
11NI ] are the Lorentz invariant integration measures derived in [4],

whose explicit form we will not need. Our focus here is on the factors coming from inte-

grating over π, π̃, πI , π̃I .

6.1 Minimal formulation

Recall that πα and π̃α have 11 independent components each. One way to parametrize

them is to write

πα = piC
i
α, π̃α = p̃iC

i
α, i = 1, . . . , 11 (6.7)
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where pi, p̃i and the independent components and Cα
i is a constant matrix of rank 11.

Then [d11π][d11π̃] =
∏

i dpidp̃i and integrating over pi yields
∏

i δ(C
i
αλα

0 ), while integrating

over p̃i yields
∏

i Ci
αθα

0 . Putting it differently, one may have started with antighosts and

auxiliary field bi, b̃i, pi, p̃i and gauge fixing condition Ci
αλα

0 = 0, for the invariance due to

the 11 zero modes of λα and gauge fixing condition Ci
αθα

0 = 0 for the invariance due to 11

of the 16 zero modes of θ. Note that the insertions can be combined into 11 insertions of

the “picture-lowering” operator

YC = Cαθα
0 δ(Cαλα

0 ) (6.8)

Similarly, we parametrize the 10g independent components of πmnI and π̃mnI as

πmnI = pjIBmn
jI , π̃mnI = p̃jIBmn

jI , j = 1, . . . , 10 (6.9)

where pjI , p̃jI are the 10g independent components and Bmn
jI are constants. Integrating

over pjI , p̃jI and πI , π̃I leads to the insertions

g
∏

I=1



(dI
αλα

0 )δ(JI)

10
∏

j=1

1

2
Bmn

Ij (dIγmnλ0)δ(B
mn
Ij N I

mn)



 =

g
∏

R=1

ZJ(zR)

10g
∏

P=1

ZBP
(wP ) (6.10)

where we reassembled the insertions in terms of the “picture-raising” operators

ZB =
1

2
Bmndγmnλδ(BmnNmn), ZJ = (λαdα)δ(J) (6.11)

inserted at positions zR, wP . Here we use the fact that the non-zero modes in the r.h.s.

of (6.10) do not contribute in any correlator [4]. These insertions correspond to gauge

fixing conditions Bmn
iJ N I

mn = 0, JI = 0, for the gauge invariance due to the 11g wα zero

modes and Bmn
Ij (dIγmnλ0) = 0, dI

αλα
0 = 0 for the gauge invariance due to 11g of the 16g

zero modes of dα. Note that the constants Ci
α, Bmn

jI enter through a gauge fixing term, so

by standard arguments correlation functions do not depend on them and their presence

does not imply breaking of Lorentz invariance.

What is left is to discuss Gab. As we shall see, we only need to recall well known facts

from the literature. By definition, Gab should satisfy (now in complex coordinates and

dropping the indices)

δSG = T, T =
1

2
ΠmΠm + dα∂θα − wα∂λα (6.12)

Since δS is nilpotent, this equation defines a cohomology class [G], i.e. solutions G up to

δS exact terms. A solution of (6.12) is given by [31]

G0 =
CαGα

Cαλα
, Gα =

1

2
Πm(γmd)α − 1

4
Nmn(γmn∂θ)α − 1

4
J∂θα − 1

4
∂2θα, (6.13)

for a constant spinor Cα. This expression also appeared in [16] as a twisted worldsheet

supersymmetry current. This solution is however not acceptable because had we allowed for
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operators with behavior (Cαλα)−1 the QS-cohomology would be trivial. Indeed, consider

the field ξ

ξ =
Cαθα

Cαλα
, δSξ = 1. (6.14)

Then any closed operator V is also exact since

δSV = 0 ⇒ V = δS(ξV ). (6.15)

A related issue is that the positions of the poles of G0 are also the positions of the zeros of

the path integral insertions thus making the expressions ill-defined.

One might hope to arrive at a well-defined expression by finding a different represen-

tative of the cohomology class [G] such that the poles in the new G would cancel against

zeros in other path integration insertions. Indeed, such a representative G1 exists and it

is given by G1 = bB/ZB , where ZB is the picture raising operator in (6.11) and bB is the

“picture-raised b ghosts” constructed in [4] by solving the equation,

δSbB = ZBT. (6.16)

It was shown in [32] that G1 is in the same cohomology class as G0. Using this solution

we find that the poles of G1 indeed cancel against zeros coming from the picture raising

operators.

Combining all ingredients we find that the multi-loop amplitude should include 3g − 3

insertions of bB , 10g− (3g− 3) insertions of ZB, g insertions of ZJ and 11 insertions of YC .

This is precisely the prescription proposed in [6].

6.2 Non-minimal formulation

Let us now return back to (6.6) and recall that πα and π̃α are QS partners, δSπα = π̃α,

see (6.4), and each has 11 independent components. These are precisely the properties of

the non-minimal variables λ̄α and rα, see section 2, so one may identify

πα = λ̄0
α, π̃α = r0

α (6.17)

where λ̄0
α, r0

α are the zero modes of λ̄α and rα. Actually since the non-minimal variables

are cohomologically trivial their non-zero modes do not contribute to any observable and

one may only keep their zero modes. Recall also that the non-minimal sector has a gauge

invariance similar to (2.3) (whose explicit form is not needed here) and the following com-

binations are gauge invariant [5]

N̄mn =
1

2
(w̄γmnλ̄ − sγmnr), J̄ = w̄αλ̄α − sαrα,

Smn =
1

2
sγmnλ̄, S = sαλ̄α (6.18)

The canonical momenta w̄α and sα have 11g zero modes each which, as in the discussion

of the minimal variables, can be traded for 10g zero modes of N̄ I
mn and SI

mn and g zero

modes of J̄I and SI . Using the QS transformations in (2.10) one finds

δSSI
mn = N̄ I

mn, δSSI = J̄I . (6.19)
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We thus find that the fields N̄ I
mn, SI

mn, SI , J̄I have the same number of components and

the same QS transformations as πmnI , π̃mnI , πI , π̃I , and we can thus identify them,

πmnI = N̄mnI , π̃mnI = SI
mn, πI = SI , π̃I = J̄I . (6.20)

With these identifications the exponential factor in (6.6) is precisely the regularization

factor N in [5] (up to inconsequential numerical factors).

It remains to discuss Gab. This field was constructed in [5] (with an elegant interpre-

tation of the construction in terms of Čech cohomology given in [6])

GB =
λ̄αGα

(λ̄λ)
+

λ̄αrβH [αβ]

(λ̄λ)2
− λ̄αrβrγK [αβγ]

(λ̄λ)3
− λ̄αrβrγrδL

[αβγδ]

(λ̄λ)4
(6.21)

where Gα is given in (6.13) and Hαβ ,Kαβγ , Lαβγδ are explicitly known but we will not

need their detailed form here. Note also that this field is cohomologically equivalent to

G0 [33]. Combining all ingredients we thus arrive at the prescription proposed in [5].

Noticed that GB field has poles as λ̄λ → 0 so one might wonder whether this prescrip-

tion suffers from the same problems as the one using G0. Indeed, there is a non-minimal

version of the argument around (6.14)–(6.15). The corresponding non-minimal ξ field is [5]

ξnm =
λ̄αθα

λ̄βλβ + rβθβ
(6.22)

This diverges as (λ̄λ)−11 so one must ensure that no operators which diverge with this rate

are allowed. A related issue is that the path integral with the insertions just discussed

will diverge if the insertions diverge as fast as (λ̄λ)−11. As discussed in [5, 6] this can only

happen for genus g > 2 (since the pure spinor measure converges as (λ̄λ)11 and GB diverges

as (λ̄λ)−3). One way to deal with this issue is look for a different representative G(B,ǫ) of

the QS cohomology class of [G] which is less singular than GB as λ̄λ → 0. A construction

of such G(B,ǫ) is presented in [6]. Using this G(B,ǫ) field one then arrives at a prescription

that in principle works to all orders.

This solves the problem in principle. The actual construction of G(B,ǫ) however is very

complicated. Given that the issues with singularities are related to the λ̄λ → 0 limit, a

different approach would be to modify the gauge fixing condition for the pure spinor zero

modes such that they are fixed to a non-zero value. It would be interesting to investigate

if such gauge fixing can be implemented and whether it would lead to a simpler scattering

amplitude prescription.

7. Conclusions

We presented in this paper a derivation of the scattering amplitude prescription of the pure

spinor superstring from first principles. Our results confirmed the prescriptions advocated

in [4] and [5, 6], show that these prescriptions are equivalent and also suggest avenues for

searching for a simpler prescription.

We now summarize our approach. We considered the pure spinor model (i.e. the

Green-Schwarz-Siegel action plus the pure spinor variables) as a “matter” sigma model
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with target space ten dimensional superspace (with embedding coordinates X, θ) times the

pure spinor space (with embedding coordinates λ). To construct a string theory we coupled

this model to two dimensional (topological) gravity and then quantized the resulting theory.

One should contrast this approach with previous works where the aim was to find a model

with local symmetry which upon gauge fixing would lead to the pure spinor model with QS

emerging as the BRST operator and the pure spinors λ as the corresponding ghosts. For us

QS and λ are part of the model ab initio and the justification for starting with this model

is that the QS cohomology gives the superstring spectrum. To maintain the QS symmetry

and consistently quantize the model after coupling to 2d gravity, the QS symmetry had to

be extended to act on the gravitational sector and we showed that QS invariance requires

the existence of a (composite) field G whose QS variation is equal to the 2d stress energy

tensor.

This model was then quantized using standard BRST techniques, introducing diffeo-

morphism ghosts, their QS partners, associated auxiliary fields etc. It turns out that all

variables one introduces in this process can be explicitly integrated out resulting in a pre-

scription for the scattering amplitudes involving (as usual) a number of unintegrated and a

number of integrated vertex operators and (3g − 3) (complex) insertions of the zero modes

of G. This result holds in general for any system with a nilpotent symmetry coupled to

topological gravity.

Our analysis included a BRST treatment of the gauge invariances due to zero modes;

the presence of a zero mode implies an invariance of the action under a shift of the field

by the corresponding zero mode. To gauge fix these invariances we introduced constant

ghosts, antighosts and corresponding auxiliary fields. In the presence of vertex operators

some of these invariances are lifted. Nevertheless, one must still gauge fix all (non-compact)

bosonic invariances because their presence implies that the worldsheet action does not

provide the appropriate convergence factor for the integration over them. We carried

out this analysis for the bosonic zero modes of the pure spinor sigma model. This led

(among other things) to the introduction of constant auxiliary fields needed to implement

the gauge fixing conditions in the path integral. Depending on the parametrization of

these fields one is led either to the minimal [4] or the non-minimal [5] prescription for

scattering amplitudes. In the latter case the auxiliary fields can be identified with the

non-minimal variables (more precisely, the zero modes of the non-minimal variables, but

since these variables are cohomologically trivial their non-zero modes do not contribute to

any observable). To complete the construction one needs the explicit form of the composite

“b-field” G. The relevant results in the literature nicely fit with our analysis and we thus

arrived at the precise form of the scattering amplitude prescriptions in [4] and [5].

The most complicated part of the scattering amplitude prescription is the construction

of a composite “b-field” with appropriate singular behavior. Although the existence of a

completely satisfactory G field is guaranteed by the results of [6], the actual construction

is very complicated. A possible avenue towards a simpler prescription would be to look

for different gauge fixing conditions for the zero modes, instead of looking for less singular

representatives of [G] as has been done so far. We hope to report on this and related issues

in the future.
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A. U(5) variables and the Y -formalism

We discuss in this appendix the use of U(5) variables and the Y -formalism. We start

by relaxing the pure spinor condition on λα and introducing a Lagrange multiplier lm to

impose it in the path integral. The (w, λ) part of the action (2.1) thus now reads

S(w,λ) =

∫

d2z
(

wα∂̄λα + lm(λγmλ)
)

. (A.1)

where λα is now an unconstrained chiral spinor. This action has a gauge invariance,

δwα = Λm(γmλ)α, δlm =
1

2
∂̄Λm + (Λγmλ) (A.2)

where Λm and Λα are gauge parameters. The Λα gauge invariance follows from the Fierz

identity

(λγmλ)γmλ = 0 (A.3)

that holds for any spinor λ. The same identity also implies that the gauge algebra is

reducible; the gauge transformations are invariant under the transformation

δΛα =
(

(λγnλ)γαβ
n − 2λαλβ

)

Λ̃β , (A.4)

with Λ̃β a new gauge parameter. This transformation has a gauge invariance of its own,

etc. The full set of reducibility conditions is discussed in the appendix of [34] and in [35].

One may proceed to quantize this system in a manifestly Lorentz invariant fashion by

introducing ghosts-for-ghosts etc but we shall not discuss this here. Instead we will use a

Lorentz breaking gauge fixing condition.

Let Γm be the SO(10) gamma matrices and let us define

Γ+
a =

1

2
(Γ2a + iΓ2a−1), Γ−a =

1

2
(Γ2a − iΓ2a−1), a = 1, 2, 3, 4, 5. (A.5)

The spinor representation can be built by treating Γa− as annihilation and Γ+
a as creation

operators, where a = 1, . . . , 5. Let us define

va1...an
= Γ+

a1
. . . Γ+

an
|0〉, v+ = Γ+

1 Γ+
2 Γ+

3 Γ+
4 Γ+

5 |0〉 v− = |0〉. (A.6)

where n = 1, . . . , 4. A chiral spinor has components λ+, λab, λa = ǫabcdeλ
bcde/24, which

transform as 1, 10 and 5∗ under the U(5) subgroup of SO(10). In these variables only 5 of

the 10 expressions λγmλ are non-trivial; the other 5 are automatically equal to zero if the

first 5 hold,

λγ+
a λ = 2λaλ

+ +
1

4
ǫabcdeλ

bcλde , (A.7)

λγa−λ = −2λbλ
ab . (A.8)
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Using (A.7) one finds that (A.8) is automatically satisfied so without loss of generality we

can set to zero the Lagrange multipliers la−. The action is now invariant under

δwα = Λa(γ+
a λ)α, δla+ =

1

2
∂̄Λa, a = 1, . . . , 5 (A.9)

This gauge transformation has rank 5, so one can gauge fix it by requiring

wa = 0. (A.10)

Following standard steps (and expressing the gamma matrices in the U(5) basis) we find

that corresponding ghost action is
∫

d2z
(

C̄b(γ
+
a )bβλβCa + waπa

)

=

∫

d2z
(

C̄aλ
+Ca + waπa

)

(A.11)

where C̄b, C
a, πa are the corresponding antighost, ghost and auxiliary fields. Integrating

them out sets wa = 0 and inserts in the path integral measure the factor (λ+)5. Further-

more, integrating out la+ leads to the delta function δ(2λaλ
+ + 1

4ǫabcdeλ
bcλde) which can be

used to integrate out λa (so we are left with the 11 independent components λ+, λab) and

also results in the insertion (λ+)−5 in the path integral measure, which cancel the factor

(λ+)5 from the ghosts. The end result is that the action (A.1) becomes the free action
∫

d2z(w+∂̄λ+ + wab∂̄λab), (A.12)

with all factors coming from eliminating the 5∗ and gauge fixing the gauge invariance

canceling out.

From this local description one should now pass to the global picture by gluing to-

gether the local pieces. The general theory is presented in [21, 22] and the pure spinor

case has been discussed in detail in [22]. In general, there may be worldsheet and target

space diffeomorphism anomalies that render the theory inconsistent. These were shown

to cancel in the pure spinor case if one would excise the λ = 0 point from the space of

pure spinors [22]. Furthermore, requiring consistent gluing should also fix the path integral

measure. Since the theory is non-anomalous this measure should be the Lorentz invariant

measure determined in [6]6 .

Finally, let us briefly discuss the Y -formalism of [36, 37, 33]. In this case one introduces

a constant pure spinor vα and the following projector,

Kα
β =

1

2
(γmλ)α(Y γm)β (A.13)

where Yα = vα/(vαλα). This projector has rank 5 (since TrK = 5) and can be used to

solve the pure spinor condition,

(λγmλ) = 0 ⇔ λαKα
β = 0. (A.14)

6To verify this one should first determine the measure in terms of λ+, λab, w−, wab requiring invariance

of the measure when we move from one patch to another and then rewrite the resulting measure in a way

that is manifestly Lorentz invariant. For the w−, wab variables this would involve changing variables to

Nmn, J . As far as we are aware this computation has not appeared in the literature, see however [22].
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Furthermore,

(1 − K)α
β(γmλ)β = 0, (A.15)

so (γmλ)β also has rank 5. This means that the gauge invariance can eliminate 5 of the

components of wα, which can be done using the gauge fixing condition,

Kα
βwβ = 0. (A.16)

Following our earlier discussion, one should now implement these steps in the path integral.

Up to issues related to possible path integral insertions that could result from the details

of the integration over lm and the ghost, this should result in the Y formalism.

B. Ghost contribution

We discuss in this appendix the computation of the contribution of the ghost fields to

scattering amplitudes. We will compute

Zm =

∫

dµ̃e−S̃dµgh exp(−Sgh) (B.1)

where dµ̃e−S̃ is given in (5.12),

dµgh = [dβ̃ab][db̃ab][dca][dγa][dCω ][dγω][dξk][dξ̂k]
κ

∏

ĵ=1

ca(σ̂
ĵ
)δ(γa(σ̂

ĵ
) (B.2)

and

Sgh =

∫

Σ

(

2γωβ̃abĝab(τ) − 2Cω(b̃abĝab(τ) − β̃abψ̂ab) (B.3)

+b̃ab[∇̂acb + ∇̂bca] + β̃ab[∇̂aγb + ∇̂bγa] + b̃abξk∂kĝab(τ)

−ψ̂ab[∂c(β̃
abcc) − 2β̃c(b∂cc

a)] − β̃ab[ξ̂k∂kĝab(τ) − τ̂kξl∂k∂lĝab(τ)]
)

where ∇̂a is the covariant derivative associated with ĝab.

Integrating out γω and β(τ) ≡ ĝab(τ)β̃ab sets the trace of β̃ab equal to zero. We will

denote by βab the traceless part of β̃ab. Integrating out ξ̂k introduces (6g − 6) insertions

of the βab zero modes, while integrating over pab, ψab and τ̂k leads to insertions of the zero

mode of the “supercurrent”,

(G̃, ∂kĝ) ≡
∫

Σ
d2σ

(

∂c(β
abcc) − 2βc(b∂cc

a) + 2βabCω +
√

ĝGab + βabξl∂l

)

∂kĝab(τ). (B.4)

After these integrations we are left with

Zm =

∫

dµβγdµ̃gh exp(−S̃gh) (B.5)

where

S̃gh =

∫

d2σ
(

βab(∇̂aγb + ∇̂bγa) + b̃ab(2Cω ĝab + ∇̂acb + ∇̂bca) + b̃abξk∂kĝab(τ)
)

(B.6)
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and

dµβγ = [dβab][dγa]

6g−6
∏

k=1

δ((β, ∂k ĝ))

κ
∏

ĵ=1

δ(γa(σ̂ĵ))

dµ̃gh = [db̃ab][dca][dCω]

6g−6
∏

k=1

dτkdξk(G̃, ∂kĝ(τ))

κ
∏

ĵ=1

ca(σ̂ĵ) (B.7)

The βγ system is now a standard CFT with a U(1) “ghost” charge conservation and the

path integral measure contains all appropriate zero mode insertions. It follows that the β-

dependent part of (B.4) drops out of (B.5) since it is charged w.r.t. the βγ U(1). Integrating

out Cω sets the trace of b̃ab to zero; we will denote by bab the traceless part, and integrating

out ξk leads to (6g − 6) insertions of the bab zero modes. We end up with

Zm =

∫

dµτdµβγdµbc exp

(

−
∫

d2σ
(

βab(∇̂aγb + ∇̂bγa) + bab(∇̂acb + ∇̂bca)
)

)

(B.8)

with dµβγ as in (B.7) and

dµbc = [dbab][dca]

6g−6
∏

k=1

(b, ∂kĝ(τ))
κ

∏

ĵ=1

ca(σ̂ĵ)

dµτ =

6g−6
∏

k=1

dτk(G, ∂k ĝ(τ)) (B.9)

It is now manifest that the integration over (bab, ca) cancels against the integration over

(βab, γa) and we are left with the same measure factor as in (5.13).
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